Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Laryngoscope Investig Otolaryngol ; 9(1): e1182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362196

RESUMO

Objective: To analyze the impact, performance, degree of specialization, and collaboration patterns of the worldwide scientific production on tissue engineering in otorhinolaryngology at the level of countries and institutions. Methods: Two different techniques were used, performance and science mapping analyses, using as samples all the available documents regarding tissue engineering focused on otorhinolaryngology applications. The dataset was retrieved from the Core Collection of the Web of Science database from 1900 to 2020. Social structure was analyzed using science mapping analysis with VOSviewer software. Results: The United States was the main producer, followed by Germany, and Japan. Malaysia and Germany had the highest Relative Specialization Index, indicating their greater relative interest in this area compared to other countries. The social structure analysis showed that the United States and Germany had significant co-authorship relationships with other countries. The University of California System, Kyoto University, and Harvard University were the leading institutions producing literature in this field. These latter two institutions showed the largest number of collaborations, although most of them were with institutions within their own country. There was a lack of connections between different communities of research. Conclusion: The United States is the main country driving progress in this research area, housing the most notable institutions. However, significant collaborations between these research centers are currently lacking. Encouraging greater cooperation among these institutions and their researchers would promote the exchange of knowledge, ultimately facilitating and accelerating advancements in this field.

2.
Sci Rep ; 13(1): 13492, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596295

RESUMO

Tissue engineering is a relatively recent research area aimed at developing artificial tissues that can restore, maintain, or even improve the anatomical and/or functional integrity of injured tissues. Otolaryngology, as a leading surgical specialty in head and neck surgery, is a candidate for the use of these advanced therapies and medicinal products developed. Nevertheless, a knowledge-based analysis of both areas together is still needed. The dataset was retrieved from the Web of Science database from 1900 to 2020. SciMAT software was used to perform the science mapping analysis and the data for the biomedical translation identification was obtained from the iCite platform. Regarding the analysis of the cognitive structure, we find consolidated research lines, such as the generation of cartilage for use as a graft in reconstructive surgery, reconstruction of microtia, or the closure of perforations of the tympanic membrane. This last research area occupies the most relevant clinical translation with the rest of the areas presenting a lower translational level. In conclusion, Tissue engineering is still in an early translational stage in otolaryngology, otology being the field where most advances have been achieved. Therefore, although otolaryngologists should play an active role in translational research in tissue engineering, greater multidisciplinary efforts are required to promote and encourage the translation of potential clinical applications of tissue engineering for routine clinical use.


Assuntos
Microtia Congênita , Otolaringologia , Humanos , Engenharia Tecidual , Ciência Translacional Biomédica , Cognição
5.
Am J Transl Res ; 14(4): 2697-2708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559386

RESUMO

Translational medicine is an important area of biomedicine, and has significantly facilitated the development of biomedical research. Despite its relevance, there is no consensus on how to evaluate its progress and impact. A systematic review was carried out to identify all the methods to evaluate translational research. Seven methods were found according to the established criteria to analyze their characteristics, advantages, and limitations. They allow us to perform this type of evaluation in different ways. No relevant advantages were found between them; each one presented its specific limitations that need to be considered. Nevertheless, the Triangle of Biomedicine could be considered the most relevant method, concerning the time since its publication and usefulness. In conclusion, there is still a lack of a gold-standard method for evaluating biomedical translational research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...